Comparison of High-Frequency Oscillatory Ventilation and High-Frequency Jet Ventilation in Cats with Normal Lungs

Stephen J. Boros, MD, Mark C. Mammel, MD, J. Michael Coleman, MD, et al

Four adult cats received alternating high-frequency oscillatory ventilation (HFOV) and high-frequency jet ventilation (HFJV) at equivalent proximal airway pressures. Physiologic measurements were made before and after each ventilator change. Proximal airway pressures were then adjusted as necessary to reestablish normal pH and PaCO2 values. Aortic, pulmonary artery, and central venous pressures were monitored. Cardiac outputs were measured. Pulmonary and systemic vascular resistance, intrapulmonary shunt, and alveolar-arterial oxygen gradient were determined. Following the change from HFOV to HFJV at similar proximal airway pressures, HFJV always produced higher pH values \((p<0.0001)\), higher PaO2 values \((p<0.05)\), lower PaCO2 values \((p<0.0001)\), as well as higher cardiac outputs \((p<0.01)\), lower pulmonary artery pressures \((p<0.001)\), and lower pulmonary vascular resistances \((p<0.001)\). Following the reciprocal crossover, from HFJV to HFOV, HFJV pH values were again higher \((p<0.001)\), and PaCO2 values were again lower \((p<0.001)\).

A comparison of HFOV and HFJV at similar pH and PACO2 values showed that HFOV consistently required higher peak inspiratory pressures \((p<0.001)\), higher mean airway pressure \((p<0.001)\), and higher pressure wave amplitudes \((p<0.001)\). Under the circumstances of this study, HFJV produced better gas exchange at lower proximal airway pressures.